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Stress-relaxation occurs in precracked polystyrene specimens accompanied by discontinuous crack growth 
under fixed displacement conditions. Crack growth is associated with a localized zone of dense crazes. The 
elliptically shaped craze zone increases in length as well as width with time. A model based on the double 
layer potential method of elastostatics is proposed to account for the drop in stress due to interactive 
crack-craze growth. This model successfully explains the observed non-linear stress-relaxation behaviour 
in terms of crack growth and crazing density. 
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INTRODUCTION 

As we continue to replace metals with plastics in 
structural components it is essential to consider the 
time-dependent performance of these materials. One can 
envisage situations where some of these components are 
going to be subjected to fixed boundary conditions. From 
our knowledge of viscoelasticity, we can only take the 
conventional stress-relaxation effect into design con- 
sideration. However, plastics may undergo irreversible 
deformation (crazing, shear banding, etc.) leading to 
crack initiation under such conditions. These processes 
can lead to additional stress-relaxation. This issue has 
been addressed in this paper using polystyrene as the 
model system. 

Historically, stress-relaxation in amorphous polymers 
has been most extensively studied in solution or rubbery 
states. Several phenomenological models have been 
proposed involving Maxwell elements to account for the 
stress-relaxation behaviour of polymers. By appropriate 
combination of these elements, complex non-linear stress- 
relaxation behaviour can be simulated 1-4. Subsequently, 
a deeper insight into the nature of relaxation processes 
has been sought using molecular models s-7. The mole- 
cular models proved extremely useful in solution and to 
some extent in the condensed rubbery state. In recent 
years, Matsuoka et  al.  s have extended these concepts to 
explain non-linear stress-relaxation in polymeric glasses 
close to their glass transition temperature. The authors 
suggest that under specific conditions the material might 
choose to relieve stresses by delayed crazing or even 
brittle fracture. More recently, models have been pro- 
posed based on Johnston-Gilman dislocation theory to 
estimate plastic deformation by homogeneous crazing in 
order to explain the nature of stress-relaxation and creep 
associated with crazing 9-1x. However, the presence of a 
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macroscopic crack can further complicate the nature of 
stress-relaxation and creep. Although models for crack 
enhanced creep are available for metals and ceramics 12, 
no effort has been made to model crack enhanced creep 
in polymers 13. 

In an earlier experimental study1*, discontinuous crack 
propagation associated with crazing has been observed 
under stress-relaxation. Using a double layer potential 
technique the amount of stress-relaxation due to crack- 
craze growth in polystyrene is estimated in this paper. 

EXPERIMENTAL 

The material used was plane isotropic extruded sheets 
(0.25 mm thick) of polystyrene obtained from Transilwrap 
Corporation (Cleveland, OH, USA). The draw ratio of 
the material was ~ 1.8 in two mutually perpendicular 
directions. Standard tensile tests showed that the Young's 
modulus (E) is ~2.2 GPa, the tensile fracture stress is 
~ 60 MPa and the ultimate elongation over 60 mm gauge 
length is ~3.5%. 

A straight notch of 4 mm depth was introduced into 
rectangular specimens (20 x 80) mm at a controlled rate 
using a razor blade fitted to an Instron crosshead. The 
edges were then carefully polished using metallographic 
techniques to a 0.3 ~tm final finish. Polished samples 
were subsequently conditioned by annealing at 90°C for 
48h followed by cooling slowly (-10°C h -1) to room 
temperature. 

The sample was monotonically loaded to initiate a 
crack at the notch tip and then held under fixed 
elongation in an Instron tensile testing machine. While 
crack growth and craze evolution were observed using 
a motor driven 35mm camera attached to an optical 
microscope, stress-rdaxation data were simultaneously 
recorded on a chart recorder. Stress-relaxation occurs in 
the sample for ~ 20 h eventually reaching an equilibrium 
value. 
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Semi-logarithmic plot of stress-relaxation behaviour of 
precracked polystyrene 
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Figure 2 Plot of crack length a ve rsus  log time. Step BC corresponds 
to an intermediate crack arrest detected from kinetic measurements 

RESULTS 

Stress-relaxation behaviour of the precracked specimen 
is shown in Figure 1. Stress-relaxation occurs for ,-, 20 h 
accompanied by discontinuous crack layer growth. The 
crack length is plotted in Figure 2 as a function of 
logarithmic time. At the end of the first 2 h crack growth 
is abruptly arrested (BC in Figure 2) for the next 3 h. The 
crack then resumes its growth and stops again at 'D' 
after which no more crack propagation is observed for 
the next 80 h at which point the experiment is terminated. 
However, diffused surface crazes continue to appear 
throughout the sample. Significant stress-relaxation is 
observed during the entire history of crack propagation. 

An optical micrograph representing a typical side view 
of the crack is shown in Figure 3. The crack propagates 
preceded and surrounded by a layer of dense crazes 
(crack layer). The elliptically shaped craze zone is 
characterized by its length I a and width w. Both I a and 
w increase monotonically with time (Figures 4 and 5), 
eventually attaining a constant value. This implies that 
the craze zone continues to evolve even when the crack 
remains arrested (BC in Figure 2). 

DISCUSSION 

The models proposed by Brown et al. 9A° and Kitagawa 
and Kawagoe 11 can be applied to estimate stress- 
relaxation caused by homogeneous crazing. However, 
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stress-relaxation may occur in association with localized 
crazing or with other damage mechanisms. It is therefore 
desirable to develop a model relating the time-dependent 
stress to the interactive crack-craze growth. The model 
proposed here takes into consideration stress-relaxation 
due to: the evolution of a non-homogeneous craze zone; 
crack growth; and interaction between the crack and the 
craze zone. The total displacement at the grips (A) is the 
sum of the displacements due to the bulk material (Aa), 

Figure 3 Optical micrograph displaying the crack and the crazed zone. 
The crazed zone is geometrically characterized by its length I a and 
width w 
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Evolution of the crazed zone length 1= as a function of log time 

E 
E 

1.2 

I . I ,  

1.0 . 

0.9'  

0.8 '  

0.7 

0.6 

Figure 5 

1 
I 

I 
t 

I 

J 
.Jr" 

/ 
/ 

p 
/ 

P 

G 2 
Log [time (h)  ] 

Evolution of the crazed zone width w as a function of log time 

POLYMER, 1993, Volume 34, Number 6 1213 



Stress-relaxation: K. Sehanobish et al. 

H 

x2 (~1' ~z ) 
A 
w 

7 
B 

I' 

Figure 6 Schematic diagram of the specimen containing a crack layer 
within the chosen coordinate system. Coordinates (~1, ~2) describe the 
location of a point on the grip of the specimen 

the layer of crazes surrounding and preceding the crack 
tip (AL) and the crack opening (Ac). Since the stiffness 
of the testing machine is considerably larger, the total 
displacement (A) is given by: 

A=Ae+AL+A c (1) 

The displacement in the bulk material can be expressed 
using Hooke's law as: 

aH 
AB = (2) 

E 

where a is the stress applied to a specimen of original 
length H and E is Young's modulus. 

In order to estimate displacements due to the crack 
(Ac) and due to the craze zone (AL), the technique for 
double layer potential is employed. The potential theory 
thus employed is applicable to an isotropic elastic plane. 
The stress at any point, ¢, in an infinite elastic plane 
caused by the application of a unit force at another point, 
x, can be obtained by multiplying the unit force vector 
with a function q~(x, ~). The function, ~o(x, ~), known as 
the second Green's tensor, transforms the unit force at 
one point to a traction vector at a different point. 
Applying the equilibrium equations for the medium, the 
second Green's tensor for the plane problem of elasto- 
statics has been derived 15. Since stresses and strains are 
linearly related in an elastic medium, the second Green's 
tensor can also be applied to obtain the displacement 
at a point x. In the case of a crack or a craze- 
like discontinuity, displacement occurs along the entire 
boundary. If this displacement distribution is described 
by a continuous function b(x) over the entire length 
of the discontinuity, the double layer potential tech- 
nique can be employed to determine the displacement at 
any point, ¢, due to jumps in displacements at the 
discontinuity. The function b(x) can be referred to as the 
'potential density'. The displacement field u(x) due to a 
discontinuity (crack or craze) in an infinite elastic 
medium is expressed in the form of integrals of the 
potential density b(x) multiplied by the second Green's 
tensor ~o(x, ~) as: 

u(x) = Jl b(x)~0(x, ¢) dx (3) 

where d is the length of the discontinuity. The double 
layer potential method permits statistical averaging and 
requires a relatively simple computational routine. 

A schematic diagram of the crack and the crazed layer 
is shown in Figure 6. The total displacement caused by 
a crazed layer is a sum of the displacements caused by 
individual crazes within the crazed zone. Hence, the 
displacement caused by the crazed layer at location 
can be obtained by integrating over the entire volume of 
the crazed layer, VL: 

AL(~) = -.JVL b(x)q)22 (X' ~) dVL (4) 

where b(x) is the displacement caused by a single 
discontinuity (craze in the present case) at an arbitrary 
location, x, within the crazed zone. The vertical com- 
ponent of the second Green's tensor is derived as: 

( l+v)~  (1 --2V)(~2--X2) 
q~2z(x, ¢)= 4~ ((¢1-xl)2 + (~2-x2) 2 

2(¢ 2 --X2) 3 
+ E(¢,-  + (5) 

where v is Poisson's ratio. The component of the influence 
tensor, q~22(x, ¢), acts as a linear operator transforming 
the jump in displacement at coordinate (xl,x2) to the 
resulting displacement at (¢ 1, ¢2), at the grips. Finally, the 
average displacement at the grips can be evaluated by 
integrating over the width (B) of the specimen as: 

2fo' (AL) = ~ AL(¢) de (6) 

Assuming that the craze layer has an average craze 
density, ( p ) m m  2 of surfaces created per mm a volume, 
equation (4) can be simplified to: 

A L = ( p )  VL~022(Xl¢ , X2c ) (7) 

where ~022(xlc, x2c) is evaluated at the centre of gravity 
of the crazed layer. Geometric evaluation of the crazed 
zone recorded experimentally is then employed to 
compute the evolution Of AL from equations (6) and (7). 

The displacement caused by the crack at the grips can 
similarly be calculated. However, in this case the integra- 
tion is performed over the crack length a as: 

L A C = b(x)tP22 (x, ~) dx (8) 

The displacement evaluated at location ¢ is then 
averaged over the sample width B. 

Since actual experimental results are used to calculate 
the displacements, (A oAL), we do not need to account 
for the displacements due to crack-craze zone interaction 
and interactions between the individual crazes. It is quite 
obvious that both craze zone geometry and crack opening 
displacement are influenced by these interactions. Finally 
incorporating equation (1) into equation (2) and re- 
arranging, we obtain the stress at the grips as" 

(A -- ( A c )  - ( A L ) ) E  
a(t) = (9) 

H 

Since the crack and the craze zone propagate, (Ac) and 
(Ae) in equation (9) increase with time, while the total 
displacement A remains fixed. Consequently, the stress 
a(t) at the grips decays. Assuming an average craze 
density (p )  of 410mmZmm -3 yields the best fit of the 
calculated solid line to the experimental stress-relaxation 
data (Figure 7). In an independent study on the same 
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Comparison of the theoretical stress-relaxation behaviour 
(solid line) with the actual stress-relaxation data ((p) = 410 mm 2 mm- 3) 

material, thinned sections of  the crazed zone were made 
and the actual craze density was estimated. The ( p )  
assumed in the present calculations is well within the 
range of  craze density reported in these investigations 16. 
The observed discrepancy between the calculated and the 
experimental data  past  20 h could p robab ly  be circum- 
vented by considering the contr ibut ion due to surface 
crazes which cont inued to appear  past 20 h. Since optical 
microscopic observations were focused at the crack tip 
region, no quanti tat ive est imation of  these surface crazes 
could be made.  

C O N C L U S I O N S  

A semi-empirical model  is developed to account  for 
stress-relaxation due to crack layer evolution. The model  
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is based on the double  layer potential  technique which 
estimates displacement at any location in an elastic 
medium due to jumps  in displacement at any other 
location. Predictions of this model  are in reasonable 
agreement with the observed stress-relaxation behaviour.  
Thus,  evolution of  the crack layer under  fixed displace- 
ment is responsible for the observed stress-relaxation. 
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